Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.054
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621879

RESUMO

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Assuntos
Miócitos Cardíacos , ATPase Trocadora de Sódio-Potássio , Ratos , Animais , Células Cultivadas , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética
2.
J Physiol Sci ; 74(1): 23, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561668

RESUMO

Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.


Assuntos
Glicosídeos Cardíacos , Neoplasias da Glândula Tireoide , Humanos , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/metabolismo , Glicosídeos/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Ouabaína/farmacologia , Proteínas de Neoplasias/metabolismo
3.
Mol Biol Rep ; 51(1): 517, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622478

RESUMO

BACKGROUND: We previously demonstrated that insulin-like growth factor-1 (IGF-1) regulates sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) in vascular smooth muscle cells (VSMC) via phosphatidylinositol-3 kinase (PI3K). Taking into account that others' work show that IGF-1 activates the PI3K/protein kinase B (Akt) signaling pathway in many different cells, we here further questioned if the Akt/mammalian target of rapamycin (mTOR)/ribosomal protein p70 S6 kinase (S6K) pathway stimulates Na+/K+-ATPase, an essential protein for maintaining normal heart function. METHODS AND RESULTS: There were 14 adult male Wistar rats, half of whom received bolus injections of IGF-1 (50 µg/kg) for 24 h. We evaluated cardiac Na+/K+-ATPase expression, activity, and serum IGF-1 levels. Additionally, we examined the phosphorylated forms of the following proteins: insulin receptor substrate (IRS), phosphoinositide-dependent kinase-1 (PDK-1), Akt, mTOR, S6K, and α subunit of Na+/K+-ATPase. Additionally, the mRNA expression of the Na+/K+-ATPase α1 subunit was evaluated. Treatment with IGF-1 increases levels of serum IGF-1 and stimulates Na+/K+-ATPase activity, phosphorylation of α subunit of Na+/K+-ATPase on Ser23, and protein expression of α2 subunit. Furthermore, IGF-1 treatment increased phosphorylation of IRS-1 on Tyr1222, Akt on Ser473, PDK-1 on Ser241, mTOR on Ser2481 and Ser2448, and S6K on Thr421/Ser424. The concentration of IGF-1 in serum positively correlates with Na+/K+-ATPase activity and the phosphorylated form of mTOR (Ser2448), while Na+/K+-ATPase activity positively correlates with the phosphorylated form of IRS-1 (Tyr1222) and mTOR (Ser2448). CONCLUSION: These results indicate that the Akt/mTOR/S6K signalling pathway may be involved in the IGF-1 regulating cardiac Na+/K+-ATPase expression and activity.


Assuntos
Fator de Crescimento Insulin-Like I , Proteínas Proto-Oncogênicas c-akt , Animais , Masculino , Ratos , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases S6 Ribossômicas
4.
Nat Commun ; 15(1): 3119, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600129

RESUMO

Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base. We thoroughly characterize a member of this subgroup, namely the protein ErNaR from Erythrobacter sp. HL-111 and show that the additional glutamic acid results in almost complete loss of pH sensitivity for sodium-pumping activity, which is in contrast to previously studied NaRs. ErNaR is capable of transporting sodium efficiently even at acidic pH levels. X-ray crystallography and single particle cryo-electron microscopy reveal that the additional glutamic acid residue mediates the connection between the other two Schiff base counterions and strongly interacts with the aspartic acid of the characteristic NDQ motif. Hence, it reduces its pKa. Our findings shed light on a subgroup of NaRs and might serve as a basis for their rational optimization for optogenetics.


Assuntos
Bases de Schiff , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/metabolismo , Bases de Schiff/química , Ácido Aspártico , Microscopia Crioeletrônica , Ácido Glutâmico , Rodopsinas Microbianas/metabolismo , Sódio/metabolismo , Rodopsina/química
5.
J Membr Biol ; 257(1-2): 79-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436710

RESUMO

The gastric H+,K+-ATPase is an integral membrane protein which derives energy from the hydrolysis of ATP to transport H+ ions from the parietal cells of the gastric mucosa into the stomach in exchange for K+ ions. It is responsible for the acidic environment of the stomach, which is essential for digestion. Acid secretion is regulated by the recruitment of the H+,K+-ATPase from intracellular stores into the plasma membrane on the ingestion of food. The similar amino acid sequences of the lysine-rich N-termini α-subunits of the H+,K+- and Na+,K+-ATPases, suggests similar acute regulation mechanisms, specifically, an electrostatic switch mechanism involving an interaction of the N-terminal tail with the surface of the surrounding membrane and a modulation of the interaction via regulatory phosphorylation by protein kinases. From a consideration of sequence alignment of the H+,K+-ATPase and an analysis of its coevolution with protein kinase C and kinases of the Src family, the evidence points towards a phosphorylation of tyrosine-7 of the N-terminus by either Lck or Yes in all vertebrates except cartilaginous fish. The results obtained will guide and focus future experimental research.


Assuntos
ATPase Trocadora de Sódio-Potássio , Estômago , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Transporte Biológico , ATPase Trocadora de Hidrogênio-Potássio/química , Íons/metabolismo
6.
Cell Mol Life Sci ; 81(1): 133, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472560

RESUMO

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase ß1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia , ATPase Trocadora de Sódio-Potássio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38438092

RESUMO

The excretory mechanisms of stenohaline marine osmoconforming crabs are often compared to those of the more extensively characterized euryhaline osmoregulating crabs. These comparisons may have limitations, given that unlike euryhaline brachyurans the gills of stenohaline marine osmoconformers possess ion-leaky paracellular pathways and lack the capacity to undergo ultrastructural changes that can promote ion-transport processes in dilute media. Furthermore, the antennal glands of stenohaline marine osmoconformers are poorly characterized making it difficult to determine what role urinary processes play in excretion. In the presented study, ammonia excretory processes as well as related acid-base equivalent transport rates and mechanisms were investigated in the Dungeness crab, Metacarcinus magister - an economically valuable stenohaline marine osmoconforming crab. Isolated and perfused gills were found to predominantly eliminate ammonia through a microtubule network-dependent active NH4+ transport mechanism that is likely performed by cells lining the arterial pockets of the gill lamella where critical Na+/K+-ATPase detection was observed. The V-type H+-ATPase - a vital component to transbranchial ammonia excretion mechanisms of euryhaline crabs - was not found to contribute significantly to ammonia excretion; however, this may be due to the transporter's unexpected apical localization. Although unconnected to ammonia excretion rates, a membrane-bound isoform of carbonic anhydrase was localized to the apical and basolateral membranes of lamella suited for respiration. Urine was found to contain significantly less ammonia as well as carbonate species than the hemolymph, indicating that unlike those of some euryhaline crabs the antennal glands of the Dungeness crab reabsorb these molecules rather than eliminate them for excretion.


Assuntos
Braquiúros , ATPases Vacuolares Próton-Translocadoras , Animais , Amônia/metabolismo , Brânquias/metabolismo , Transporte Biológico , Sódio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Braquiúros/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Environ Sci Pollut Res Int ; 31(12): 18636-18655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351352

RESUMO

The inland saline waters were continuously observed to have low potassium concentrations compared to their seawater counterpart of the same salinity. We hypothesize that the toxic effect of sulfate may manifest in low potassium saline (LPSW) waters compared to brackish water of the same salinity. Thus, LC50 trials were performed in GIFT (genetically improved farmed tilapia) fry (0.5 ± 0.02 g) to determine the acute sulfate toxicity in freshwater (FW, 0.5 g L-1), artificial seawater (ASW, 10 g L-1), and LPSW (10 g L-1). The median lethal concentrations (96h LC50) of sulfate ion in FW, LPSW, and ASW for the GIFT were 5.30 g L-1, 2.56 g L-1, and 2.98 g L-1, respectively. A second experiment was conducted for 21 days, exposing fish to a sub-lethal level of sulfate ion (SO42-) concentration (1000 mg L-1, one-fifth of FW LC50) with different types of waters (FW, freshwater, 0.5 g L-1; ASW, artificial seawater, 10 g L-1; LPSW, low potassium saline water, 10 g L-1) with and without sulfate inclusion to constitute the treatments as follows, (FW, FW + SO4, ASW, ASW + SO4, LPSW, LPSW + SO4). The effect of sulfate on GIFT reared in sulfate-rich potassium-deficient medium saline water was evaluated by focusing on the hematological adjustments, stress-induced oxidative damage, and osmoregulatory imbalances. The survival was not altered due to the sulfate concentration and K+ deficiency; however, there were significant changes in branchial NKA (Na+/K+-ATPase) activity and osmolality. The increase in NKA was highest in LPSW treatment, suggesting that internal ionic imbalance was triggered due to an interactive effect of sulfate and K+ deficiency. The cortisol levels showed a pronounced increase due to sulfate inclusion irrespective of K+ deficiency. The antioxidant enzymes, i.e., SOD (superoxide dismutase), catalase, GST (glutathione-S-transferase), and GPX (glutathione peroxidase), reflected a similar pattern of increment in the gills and liver of the LPSW + SO4 groups, suggesting a poor antioxidant status of the exposed group. The hepatic peroxidation status, i.e. TBARS (thiobarbituric acid reactive substances), and the peroxide values were enhanced due to both K+ deficiency and sulfate inclusion, suggesting a possible lipid peroxidation in the liver due to handling the excess sulfate anion concentration. The hematological parameters, including haemoglobin, total erythrocyte count, and hematocrit level, reduced significantly in the LPSW + SO4 group, indicating a reduced blood oxygen capacity due to the sulfate exposure and water potassium deficiency. The hepatic acetylcholine esterase activity was suppressed in all the treatments with sulfate inclusion, while the highest suppression was observed in the LPSW + SO4 group. Thus, it is concluded that sulfate-induced physiological imbalances manifest more in potassium-deficient water, indicating that environmental sulfate is more detrimental to inland saline water than freshwater or brackish water of the same salinity.


Assuntos
Ciclídeos , Animais , Ciclídeos/metabolismo , Antioxidantes , Potássio , Sulfatos , ATPase Trocadora de Sódio-Potássio/metabolismo , Aclimatação , Salinidade , Água do Mar/química , Brânquias/metabolismo
9.
Sci Rep ; 14(1): 2903, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316820

RESUMO

This study was conducted to investigate the energy mobilisation preference and ionoregulation pattern of female tilapia, Oreochromis sp. living in different environments. Three different treatments of tilapia as physiology compromising model were compared; tilapia cultured in recirculating aquaculture system (RAS as Treatment I-RAS), tilapia cultured in open water cage (Treatment II-Cage) and tilapia transferred from cage and cultured in RAS (Treatment III-Compensation). Results revealed that tilapia from Treatment I and III mobilised lipid to support gonadogenesis, whilst Treatment II tilapia mobilised glycogen as primary energy for daily exercise activity and reserved protein for growth. The gills and kidney Na+/K+ ATPase (NKA) activities remained relatively stable to maintain homeostasis with a stable Na+ and K+ levels. As a remark, this study revealed that tilapia strategized their energy mobilisation preference in accessing glycogen as an easy energy to support exercise metabolism and protein somatogenesis in cage culture condition, while tilapia cultured in RAS mobilised lipid for gonadagenesis purposes.


Assuntos
Ciclídeos , Tilápia , Animais , Feminino , Tilápia/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ciclídeos/metabolismo , Reprodução , Glicogênio/metabolismo , Lipídeos , Brânquias/metabolismo
10.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338921

RESUMO

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.


Assuntos
Depressão , ATPase Trocadora de Sódio-Potássio , Humanos , Camundongos , Ratos , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Ouabaína/metabolismo , Isoformas de Proteínas/metabolismo , Esteroides
11.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339183

RESUMO

The main characteristic of polycystic kidney disease is the development of multiple fluid-filled renal cysts. The discovery of mislocalized sodium-potassium pump (Na,K-ATPase) in the apical membrane of cyst-lining epithelia alluded to reversal of polarity as a possible explanation for the fluid secretion. The topic of apical Na,K-ATPase in cysts remains controversial. We investigated the localization of the Na,K-ATPase and assessed the apical-basolateral polarization of cyst-lining epithelia by means of immunohistochemistry in kidney tissue from six polycystic kidney disease patients undergoing nephrectomy. The Na,K-ATPase α1 subunit was conventionally situated in the basolateral membrane of all immunoreactive cysts. Proteins of the Crumbs and partitioning defective (Par) complexes were localized to the apical membrane domain in cyst epithelial cells. The apical targeting protein Syntaxin-3 also immunolocalized to the apical domain of cyst-lining epithelial cells. Proteins of the basolateral Scribble complex immunolocalized to the basolateral domain of cysts. Thus, no deviations from the typical epithelial distribution of basic cell polarity proteins were observed in the cysts from the six patients. Furthermore, we confirmed that cysts can originate from virtually any tubular segment with preserved polarity. In conclusion, we find no evidence of a reversal in apical-basolateral polarity in cyst-lining epithelia in polycystic kidney disease.


Assuntos
Cistos , Doenças Renais Policísticas , Humanos , ATPase Trocadora de Sódio-Potássio/metabolismo , Polaridade Celular , Doenças Renais Policísticas/metabolismo , Epitélio/metabolismo , Membrana Celular/metabolismo , Proteínas Qa-SNARE/metabolismo , Cistos/metabolismo , Rim/metabolismo
12.
Cell Calcium ; 118: 102851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308916

RESUMO

The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Enxaqueca com Aura , Humanos , Camundongos , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Astrócitos/metabolismo , Doença de Alzheimer/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo
13.
Am J Physiol Cell Physiol ; 326(4): C1120-C1177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223926

RESUMO

Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and ß subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Ratos , Animais , Ouabaína/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ligantes , Digoxina/farmacologia , Cardiotônicos/farmacologia , Hipertensão/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Sinalização do Cálcio , Sítios de Ligação
14.
J Chem Inf Model ; 64(3): 974-982, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38237560

RESUMO

Krokinobacter eikastus rhodopsin 2 (KR2) is a typical light-driven sodium pump. Although wild-type KR2 exhibits high Na+ selectivity, mutagenesis performed on the residues constituting the entrance enables permeation of K+ and Cs+, while the underlying mechanism remains elusive. This study presents a comprehensive molecular dynamics investigation, including force field optimization, metadynamics, and alchemical free energy methods, to explore the N61L/G263F mutant of KR2, which exhibits transportability for K+ and Cs+. The introduced Phe263 residue can directly promote ion binding at the entrance through cation-π interactions, while the N61L mutation can enhance ion binding at Phe46 by relieving steric hindrance. These results suggest that cation-π interactions may significantly influence the ion transportability and selectivity of KR2, which can provide important insights for protein engineering and the design of artificial ion transporters.


Assuntos
Flavobacteriaceae , Simulação de Dinâmica Molecular , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Cátions/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38253199

RESUMO

Fish gills are complex organs that have direct contact with the environment and perform numerous functions including gas exchange and ion regulation. Determining if gill morphometry can change under different environmental conditions to maintain and/or improve gas exchange and ion regulation is important for understanding if gill plasticity can improve survival with increasing environmental change. We assessed gill morphology (gas exchange and ion regulation metrics), hematocrit and gill Na+/K+ ATPase activity of wild-captured blackside darter (Percina maculata), greenside darter (Etheostoma blennioides), and johnny darter (Etheostoma nigrum) at two temperatures (10 and 25 °C) and turbidity levels (8 and 94 NTU). Samples were collected August and October 2020 in the Grand River to assess temperature differences, and August 2020 in the Thames River to assess turbidity differences. Significant effects of temperature and/or turbidity only impacted ionocyte number, lamellae width, and hematocrit. An increase in temperature decreased ionocyte number while an increase in turbidity increased lamellae width. Hematocrit had a species-specific response for both temperature and turbidity. Findings suggest that the three darter species have limited plasticity in gill morphology, with no observed compensatory changes in hematocrit or Na+/K+ ATPase activity to maintain homeostasis under the different environmental conditions.


Assuntos
Brânquias , Rios , Animais , Temperatura , Brânquias/metabolismo , Sódio/metabolismo , Adenosina Trifosfatases , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Int J Geriatr Psychiatry ; 39(1): e6047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38161286

RESUMO

OBJECTIVES: Chronic hyperglycemia is considered as an important factor to promote the neurodegenerative process of brain, and the synaptic plasticity as well as heterogeneity of hippocampal cells are thought to be associated with cognitive dysfunction in the early process of neurodegeneration. To date, fibronectin type III domain-containing protein 5 (FNDC5) has been highlighted its protective role in multiple neurodegenerative diseases. However, the potential molecular and cellular mechanisms of FNDC5 on synaptic plasticity regulation in cognitive impairment (CI) induced by diabetics are still need to known. METHODS/DESIGN: To investigate the heterogeneity and synaptic plasticity of hippocampus in animals with CI state induced by hyperglycemia, and explore the potential role of FNDC5 involved in this process. Firstly, the single cell sequencing was performed based on the hippocampal tissue from db diabetic mice induced CI and normal health control mice by ex vivo experiments; and then the integrated analysis and observations validation using Quantitative Real-time PCR, western blot as well as other in vitro studies. RESULTS: We observed and clarified the sub-cluster of type IC spiral ganglion neurons expressed marker genes as Trmp3 and sub-cluster of astrocytes with marker gene as Atp1a2 in hippocampal cells from diabetic animals induced CI and the effect of those on neuron-glial communication. We also found that FNDC5\BDNF-Trk axis was involved in the synaptic plasticity regulation of hippocampus. In high glucose induced brain injury model in vitro, we investigated that FNDC5 significantly regulates BDNF expression and that over-expression of FNDC5 up-regulated BDNF expression (p < 0.05) and can also significantly increase the expression of synapsin-1 (p < 0.05), which is related to synaptic plasticity, In addition, the unbalanced methylation level between H3K4 and H3K9 in Fndc5 gene promoter correlated with significantly down-regulated expression of FNDC5 (p < 0.05) in the hyperglycemia state. CONCLUSION: The current study revealed that the synaptic plasticity of hippocampal cells in hyperglycemia might be regulated by FNDC5\BDNF-Trk axis, playing the protective role in the process of CI induced by hyperglycemia and providing a target for the early treatment of hyperglycemia induced cognitive dysfunction in clinic.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Fibronectinas , Hiperglicemia , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Hipocampo , Hiperglicemia/metabolismo , Plasticidade Neuronal/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Biomolecules ; 14(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275764

RESUMO

Na+,K+-ATPase actively extrudes three cytoplasmic Na+ ions in exchange for two extracellular K+ ions for each ATP hydrolyzed. The atomic structure with bound Na+ identifies three Na+ sites, named I, II, and III. It has been proposed that site III is the first to be occupied and site II last, when Na+ binds from the cytoplasmic side. It is usually assumed that the occupation of all three Na+ sites is obligatory for the activation of phosphoryl transfer from ATP. To obtain more insight into the individual roles of the ion-binding sites, we have analyzed a series of seven mutants with substitution of the critical ion-binding residue Ser777, which is a shared ligand between Na+ sites I and III. Surprisingly, mutants with large and bulky substituents expected to prevent or profoundly disturb Na+ access to sites I and III retain the ability to form a phosphoenzyme from ATP, even with increased apparent Na+ affinity. This indicates that Na+ binding solely at site II is sufficient to promote phosphorylation. These mutations appear to lock the membrane sector into an E1-like configuration, allowing Na+ but not K+ to bind at site II, while the cytoplasmic sector undergoes conformational changes uncoupled from the membrane sector.


Assuntos
Trifosfato de Adenosina , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fosforilação , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Íons/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-38218567

RESUMO

Polyvinylpyrrolidone-functionalized silver nanoparticles (nAgPVP) are popular in consumer products for their colloidal stability and antimicrobial activity. Whole lake additions of nAgPVP cause long term, ecosystem-scale changes in fish populations but the mechanisms underlying this effect are unclear. We have previously shown that in fish, nAgPVP impairs cardiac contractility and Na+/K+-ATPase (NKA) activity in vitro, raising the possibility that heart dysfunction could underlie population-level exposure effects. The goal of this study was to determine if nAgPVP influences the control of heart rate (fh), blood pressure, or cardiac NKA activity in vivo. First, a dose-response curve for the effects of 5 nm nAgPVP on contractility was completed on isometrically contracting ventricular muscle preparations from Arctic char (Salvelinus alpinus) and showed that force production was lowest at 500 µg L-1 and maximum pacing frequency increased with nAgPVP concentration. Stroke volume, cardiac output, and power output were maintained in isolated working heart preparations from brook char (Salvelinus fontinalis) exposed to 700 µg L-1 nAgPVP. Both fh and blood pressure were elevated after 24 h in brook char injected with 700 µg kg body mass-1 nAgPVP and fh was insensitive to modulation with blockers of ß-adrenergic and muscarinic cholinergic receptors. Na+/K+-ATPase activity was significantly lower in heart, but not gill of nAgPVP injected fish. The results indicate that nAgPVP influences cardiac function in vivo by disrupting regulation of the pacemaker and cardiomyocyte ionoregulation. Impaired fh regulation may prevent fish from appropriately responding to environmental or social stressors and affect their ability to survive.


Assuntos
Nanopartículas Metálicas , Animais , Nanopartículas Metálicas/toxicidade , Prata , Ecossistema , Truta/fisiologia , Sódio , Íons , Adenosina Trifosfatases , ATPase Trocadora de Sódio-Potássio/metabolismo , Brânquias/metabolismo
19.
Eur J Appl Physiol ; 124(3): 681-751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206444

RESUMO

This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.


Assuntos
Ouabaína , ATPase Trocadora de Sódio-Potássio , Humanos , Ratos , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Ouabaína/metabolismo , Músculo Esquelético/metabolismo , Contração Muscular , Hormônios/metabolismo , Isoformas de Proteínas/metabolismo , Íons/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-38224831

RESUMO

Salinity and temperature influence growth, survival, and reproduction of crustacean species such as Penaeus vannamei where Na +/K+-ATPase plays a key role in maintaining osmotic homeostasis in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na+/K+-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na+/K+-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na+/K+ -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na+/K+-ATPase induction. Since Na+/K+-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in P. vannamei, their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.


Assuntos
Penaeidae , Animais , Penaeidae/metabolismo , Salinidade , Adenosina Trifosfatases/metabolismo , Temperatura , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Brânquias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...